Effect of solidification mode and morphology of microstructure on the hydrogen content of duplex stainless steel weld metal
Küçük Resim Yok
Tarih
2004
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The evolution rate of hydrogen from a duplex weld depends on sample geometry, temperature and microstructure. These factors have important consequences for the determination of hydrogen in duplex stainless steel welds. Because of the low hydrogen diffusibility and high hydrogen solubility in austenite, a standard method (BS 6693: 1988) which existed to determine the hydrogen content of ferritic steel welds as a means of assessing welding consumables, is not suitable for duplex welds. As a result of extensive research, a modified test method has been used involving encapsulation of the weld sample in Pyrex, evolution at 400 °C for 24 h, and followed by hydrogen analysis in an Oerlikon/Yanaco gas chromatograph. In this present work, the effect of solidification mode and microstructure on weld hydrogen content, and the evolution of hydrogen from such welds has been investigated by using experimental electrodes which are designed to give varying ferrite/austenite ratio in the welds. It was found that the measured weld hydrogen contents were almost constant since they arose from the flux/binder combinations which were the same for each type of experimental electrodes. Thus, the potential hydrogen from each type was the same and similar amounts became trapped during the rapid solidification of the weld pool, irrespective of final ferrite content. © 2003 Elsevier Ltd. All rights reserved.
Açıklama
Anahtar Kelimeler
Duplex stainless steel, Hydrogen content, Microstructure and ferrite content
Kaynak
Materials and Design
WoS Q Değeri
Scopus Q Değeri
Q1
Cilt
25
Sayı
1