BGP Anomali Tespitinde Hibrit Model Yaklaşimi

dc.contributor.authorUluer, A.F.
dc.contributor.authorAlbayrak, Z.
dc.contributor.authorOzalp, A.N.
dc.contributor.authorCakmak, M.
dc.contributor.authorAltunay, H.C.
dc.date.accessioned2024-09-29T16:16:40Z
dc.date.available2024-09-29T16:16:40Z
dc.date.issued2022
dc.departmentKarabük Üniversitesien_US
dc.description30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- Safranbolu -- 182415en_US
dc.description.abstractBorder Gateway Protocol (BGP) is important for the quality of the connection between autonomous systems and the domains it is connected to. With attacks made at this level, any anomaly in the network will cause connection failures at the border gateways. In this study, a classification model is proposed by using machine learning and deep learning algorithms for the detection of BGP anomalies. The proposed model is developed based on decision trees and random forest and multilayer perceptron algorithms. Indirect BGP anomalies and connection failure anomalies in the model were evaluated with accuracy and F1-score. In the tests performed on the Slammer dataset, it was seen that the best result was obtained with 99,47 accuracy, and 98,85 F1-Score value in the model studied with the Hybrit Model. © 2022 IEEE.en_US
dc.identifier.doi10.1109/SIU55565.2022.9864921
dc.identifier.isbn978-166545092-8
dc.identifier.scopus2-s2.0-85138674071en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864921
dc.identifier.urihttps://hdl.handle.net/20.500.14619/9255
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomalyen_US
dc.subjectBGPen_US
dc.subjectInternet Exchange Pointen_US
dc.titleBGP Anomali Tespitinde Hibrit Model Yaklaşimien_US
dc.typeConference Objecten_US

Dosyalar