Deepfake detection using rationale-augmented convolutional neural network

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Deepfake network is a prominent topic of research as an application to various systems about security measures. Although there have been many recent advancements in facial reconstruction, the greatest challenge to overcome has been the means of finding an efficient and quick way to compute facial similarities or matches. This work is created utilizing the rationale-augmented convolutional neural network (CNN) on MATLAB R2019a platform using the Kaggle DeepFake Video dataset with an accuracy of 95.77%. Hence, real-time deepfake facial reconstruction for security purposes is difficult to complete concerning limited hardware and efficiency. This research paper looks into rational augmented CNN state-of-the-art technology utilized for deepfake facial reconstruction via hardware such as webcams and security cameras in real time. Additionally, discuss a history of face reconstruction and provide an overview of how it is accomplished.

Açıklama

Anahtar Kelimeler

Deepfake, Video, Detection, Segmentation, Facial alignment, Deep learning, Reconstruction

Kaynak

Applied Nanoscience

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

Sayı

Künye