Removal of speckle noises from ultrasound images using five different deep learning networks

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier - Division Reed Elsevier India Pvt Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Image enhancement methods are applied to medical images to reduce the noise that they contain. There are many academic studies in the literature using classical image enhancement methods. Ultrasound imaging is a medical imaging method that is used for the diagnosis of diseases. In this study, speckle noises with Rayleigh distribution at four different noise levels (sigma = 0.10, 0.25, 0.50, 0.75) are added to ultrasound images of the brachial plexus nerve region. Five different deep learning networks (Dilated Convolution Autoencoder Denoising Network/Di-Conv-AE-Net, Denoising U-Shaped Net/D-U-Net, BatchRenormalization U-Net/Br-U-Net, Generative Adversarial Denoising Network/DGan-Net, and CNN Residual Network/DeRNet) are used for reducing the speckle noises of the ultrasound images. The performances of the deep networks are compared with block-matching and 3D filtering (BM3D), which is one of the most preferred classical image enhancement algorithms; with classical filters including Bilateral, Frost, Kuan, Lee, Mean, and Median Filters; and with deep learning networks including Learning Pixel Distribution Prior with Wider Convolution for Image Denoising (WIN5-RB), Denoising Prior Driven Deep Neural Network for Image Restoration (DPDNN), and Fingerprint Image Denoising and Inpainting Using M-Net Based Convolutional Neural Networks (FPD-M-Net). Network performance is evaluated according to peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and runtime criteria and the proposed deep learning networks are shown to outperform the other networks. (C) 2021 Karabuk University. Publishing services by Elsevier B.V.

Açıklama

Anahtar Kelimeler

Ultrasound imaging, Deep learning, Speckle noise, Denoising, Image enhancement

Kaynak

Engineering Science and Technology-An International Journal-Jestech

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

29

Sayı

Künye