Numerical investigation of hydrothermal performance over perforated conical pin heat sinks

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Over the past few decades, researchers have shown significant interest in enhancing the thermal efficiency of heat sinks while simultaneously increasing the power generation capacity of electronic devices and reducing their size. In this study, the focus lies on the originality of employing conical perforated pin heat sinks with multiple perforations (N = 0, 1, 2, and 3) and various conical pins inclination angles (Phi = 0 degrees, 1 degrees, 2 degrees, 3 degrees, and 4 degrees). The study aimed to numerically investigate the effects of a perforated conical pin and cone inclination angle on heat transfer, pressure drop, CPU temperature, and hydrothermal performance (HTP) across the heat sinks using a three-dimensional, turbulent flow as k-omega SST model combined with the thermal conjugate model. A validated CFD model is employed to conduct a parametric analysis of the effects of the quantity and placement of circular holes. A summary of the results reveals that Model B3 exhibited the highest HTP value, reaching approximately 1.15 at U = 10 m/s, with a commendable reduction in heat sink mass of over 18%. Ultimately, the perforated conical pin heat sink demonstrates the potential to fulfill the primary objective of this investigation, which is achieving an overall improvement in Nusselt number, CPU temperature, pressure drop, and reduced heat sink mass.

Açıklama

Anahtar Kelimeler

conical pin heat sink, conjugate heat transfer, k-omega SST model, perforated conical pins

Kaynak

Heat Transfer

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

53

Sayı

2

Künye