EFFECT OF THE NANOFLUID FLOW AND EXTENDED SURFACES ON AN ABRUPT EXPANSION TUBE REGARDING THERMODYNAMIC IRREVERSIBILITY
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Begell House Inc.
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Numerous scientists have examined circular dimpled surfaces, tubes, and other approaches for enhancing heat transfer. Moreover, the dimples’ angle of attack has a substantial effect on the tube’s flow and thermal features. This numerical study presents a novel approach to enhancing heat transfer rate in a tube subjected to constant heat flux by incorporating a surface dimpling strategy and evaluates three different tube layouts with elliptical dimpled fins for different working fluids such as DW and Al2O3/DW nanofluid (? = 0.5–1.0%) by using ANSYS Fluent v2020R2 under laminar flow conditions. Under identical circumstances, the thermal performances of proposed designs are compared to those of a smooth tube, and the influence of the elliptical dimpled fin angle of attack on these parameters is determined for different Reynolds numbers (1000 ? Re ? 2000). When comparing the Nusselt number of a tube with/without elliptical dimpled fins, it is found that EDT 1 performed better. Lower Reynolds numbers are shown to result in a greater friction factor. Besides, elliptical dimpled fins promote flow mixing within the tube and the establishment of a thermal boundary layer. At a 135° attack angle (EDT 1), the 1.0% Al2O3/DW nanofluid is found to be the best-performing nanofluid in the dimpled tube, improving Nu by up to 44.56%. Furthermore, ff presented an increase of 29.18% when comparing ST and EDT 1 flowing 1.0% Al2O3/DW at Re = 2000, while total S•gen is diminished by 37.75% in the same conditions. © 2024 by Begell House, Inc.
Açıklama
Anahtar Kelimeler
Al<sub>2</sub>O<sub>3</sub>/DW, CFD, elliptical dimpled fin, entropy generation, nanofluid, sudden expansion tube
Kaynak
Heat Transfer Research
WoS Q Değeri
Scopus Q Değeri
Q3
Cilt
55
Sayı
1