Artificial neural network approach for evaluation of temperature and density profiles of salt gradient solar pond

dc.authoridBINARK, AHMET KORHAN/0000-0001-7504-7127
dc.contributor.authorKurt, H.
dc.contributor.authorAtik, K.
dc.contributor.authorOzkaymak, M.
dc.contributor.authorBinark, A. K.
dc.date.accessioned2024-09-29T16:05:10Z
dc.date.available2024-09-29T16:05:10Z
dc.date.issued2007
dc.departmentKarabük Üniversitesien_US
dc.description.abstractThe purpose of this study is to evaluate temperature and density profiles of an experimentally investigated salt gradient solar pond (SGSP) by using artificial neural network ( ANN). The input parameters of the ANN are solar pond depth, ambient temperature, radiation absorption coefficient of salty solution in the pond, initial density values of the pond and time of day. The output parameters of the ANN are temperature and density profiles in the pond. The experimental data set consists of 168 values. These divided into two groups, of which the 134 values were used for training/learning of the network and the rest of data ( 34 values) for testing/validation of the network performance. According to the ANN predicted results compared to the experimental results, the mean relative error (MRE) is 2.30% for temperature and 0.63% for density. The correlation coefficients (R-2) between the experimentally measured and the ANN predicted results are 0.9632 for temperature and 0.9855 for density in the test/validation data set. The calculated errors of proposed ANN model are in acceptable ranges. These results indicated that the ANN approach could be considered as an alternative and practical technique to evaluate the temperature and density profiles of a SGSP.en_US
dc.identifier.doi10.1179/174602207X171570
dc.identifier.endpage51en_US
dc.identifier.issn1743-9671
dc.identifier.issn1746-0220
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-33947695717en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage46en_US
dc.identifier.urihttps://doi.org/10.1179/174602207X171570
dc.identifier.urihttps://hdl.handle.net/20.500.14619/6528
dc.identifier.volume80en_US
dc.identifier.wosWOS:000245850900007en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofJournal of the Energy Instituteen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectsalt gradient solar ponden_US
dc.subjectexperimental studyen_US
dc.subjectartificial neural networken_US
dc.titleArtificial neural network approach for evaluation of temperature and density profiles of salt gradient solar ponden_US
dc.typeArticleen_US

Dosyalar