Enhancing filtration performance of submicron particle filter media through bimodal structural design

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Depth filtration is a widely utilized mechanism for submicron aerosol filtration using disposable filter cartridges and facemasks. The filter media should be carefully engineered to reach high filtration efficiency and dust-loading capacity at the expense of a low-pressure drop (Delta P). Filter media with bimodal fiber diameter distribution enhance particle capture by creating small pores with tiny fibers, while microfibers improve airflow, reduce Delta P, and increase the effective filter area for particle retention. In this study, bimodal filters were achieved through the homogeneous distribution or layered use of nanofibers and microfibers. The impact of the bimodal design was explored using fibrous mats produced through melt-blowing, solution-blowing, and electroblowing methods. Keeping the basis weight of filter samples at 30 gsm, using four-layered filters (4L) improved air permeability compared to single-layer samples. The 4L sample exhibited the highest performance, achieving 99.52% efficiency at 148 Pa. Moreover, replacing the melt-blown layer with bimodal mats in the 4L design increased the filtration efficiency to 99.61% keeping Delta P nearly the same. The corona discharge treatment yielded the highest efficiency (99.99%) in the 4BML sample, even after 1 month the efficiency was maintained at 99.90%, highlighting the advantage of bimodal fiber distribution in electret filters.HighlightsFour-layered filter (4L) structures resulted in improved air permeability.Bimodal layer (BL) achieved by adding SB nanofibers into the melt blowing.BL in 4L structure increased the efficiency from 99.52% to 99.61%.Modified BL sample (4BML) provides the highest QF (0.044 Pa-1) after 1 month. Production of the layered bimodal mats in different structural designs and their filtration performance.image

Açıklama

Anahtar Kelimeler

air filter, bimodal, corona discharge, layered structure, PP, PVDF

Kaynak

Polymer Engineering and Science

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

64

Sayı

2

Künye