Quenching for Porous Medium Equations
dc.authorid | Selcuk, Burhan/0000-0002-5141-5148 | |
dc.contributor.author | Selcuk, Burhan | |
dc.date.accessioned | 2024-09-29T16:09:55Z | |
dc.date.available | 2024-09-29T16:09:55Z | |
dc.date.issued | 2022 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description.abstract | This paper studies the following two porous medium equations with singular boundary conditions. First, we obtain that finite time quenching on the boundary, as well as k(t) blows up at the same finite time and lower bound estimates of the quenching time of the equation k(t) = (k(n))(xx) + (1 - k)(-alpha), (x, t) is an element of (0, L) x (0, T) with (k(n))(x) (0, t) = 0, (k(n))(x) (L, t) = (1 - k(L, t))(-beta), t is an element of (0, T) and initial function k (x, 0) = k(0) (x), x is an element of[0, L] where n > 1, alpha and beta are positive constants. Second, we obtain that finite time quenching on the boundary, as well as k(t) blows up at the same finite time and a local existence result by the help of steady state of the equation k(t) = (k(n))(xx), (x, t) is an element of (0, L) x (0, T) with (k(n))(x) (0, t) = (1 - k(0, t))(-alpha), (k(n))(x) (L, t) = (1 - k(L, t))(-beta), t is an element of(0, T) and initial function k (x, 0) = k(0) (x), x is an element of [0, L] where n > 1, alpha and beta are positive constants. | en_US |
dc.identifier.doi | 10.5556/j.tkjm.53.2022.3853 | |
dc.identifier.endpage | 185 | en_US |
dc.identifier.issn | 0049-2930 | |
dc.identifier.issn | 2073-9826 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85105088805 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 175 | en_US |
dc.identifier.uri | https://doi.org/10.5556/j.tkjm.53.2022.3853 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/7834 | |
dc.identifier.volume | 53 | en_US |
dc.identifier.wos | WOS:000800609400006 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Tamkang Univ | en_US |
dc.relation.ispartof | Tamkang Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Maximum principles | en_US |
dc.subject | Nonlinear diffusion equation | en_US |
dc.subject | Heat equation | en_US |
dc.subject | Quenching | en_US |
dc.subject | Singular boundary condition | en_US |
dc.title | Quenching for Porous Medium Equations | en_US |
dc.type | Article | en_US |