THERMOECONOMIC ANALYSIS OF T56 TURBOPROP ENGINE UNDER DIFFERENT LOAD CONDITIONS
Küçük Resim Yok
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Turkish Soc Thermal Sciences Technology
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this study, T56 turboprop engine was theoretically modelled for 75% load, 100% load, military (MIL) mode, and Take-off mode conditions. For each load conditions, thermoeconomic analyses of T56 turboprop engine were performed to allocate the unit costs of shaft work and thrust and to determine exergy destruction cost rates for system equipment. In thermoeconomic analyses, Specific Exergy Costing (SPECO) and Modified Productive Structure Analysis (MOPSA) methods were used. MOPSA method gave higher unit cost values for shaft work and thrust compared to SPECO method. As a result, for Take-off mode, the unit cost of shaft work transferred to propeller was determined to be 78.87 $/GJ in SPECO method, while this value was calculated to be 84.68 $/GJ with MOPSA method. The unit cost of negentropy of T56 turboprop engine decreased with increasing in engine load and ranged from 14.98 $/GJ to 11.08 $/GJ. The exergy destruction cost rates obtained with MOPSA method for the system equipment were considerably lower than the results obtained with SPECO method. For instance, in Take-off mode, exergy destruction cost rate of combustion chamber was calculated to be 865.10 $/h in SPECO method, whereas it was calculated to be 247.94 $/h in MOPSA method. The exergoeconomic factor of overall system was determined to be 23.07% in SPECO method, and 54.16% in MOP SA method for Take-off mode.
Açıklama
Anahtar Kelimeler
Aircraft engine, Exergy analysis, Thermoeconomics, MOPSA, SPECO
Kaynak
Isi Bilimi Ve Teknigi Dergisi-Journal of Thermal Science and Technology
WoS Q Değeri
Q4
Scopus Q Değeri
Q4
Cilt
40
Sayı
2