Land use land cover mapping using advanced machine learning classifiers

dc.contributor.authorJamali, A.
dc.date.accessioned2024-09-29T16:16:22Z
dc.date.available2024-09-29T16:16:22Z
dc.date.issued2021
dc.departmentKarabük Üniversitesien_US
dc.description.abstractDue to the recent climate changes such as floods and droughts, there is a need for Land Use Land Cover (LULC) mapping to monitor environmental changes that have effects on ecology, policy management, health and disaster management. As such, in this study, two well-known machine learning classifiers, namely, Support Vector Machine (SVM) and Random Forest (RF), are used for land cover mapping. In addition, two advanced deep learning algorithms, namely, the GAMLP and FSMLP, that are based on the Multi-layer Perceptron (MLP) function are developed in MATLAB programming language. The GAMLP uses a Genetic Algorithm (GA) to optimise parameters of the MLP function and, on the other hand, the FSMLP uses a derivative-free function for optimisation of the MLP function parameters. Three different scenarios using Landsat-8 imagery with spatial resolutions of 30 and 15 m are defined to investigate the effects of data pre-processing on the final predicted LULC map. Results based on the statistical indices, including overall accuracy (OA) and kappa index, show that the developed MLP-based algorithms have relatively high accuracies with higher than 98% correct classification. Besides the statistical indices, final LULC maps are interpreted visually where the GAMLP and FSMLP give the best results for the pre-processed Landsat-8 imagery with a spatial resolution of 15 m, but they have the worst outcomes for the unprocessed Landsat-8 imagery compared to SVM and RF classifiers visually and statistically. © 2021 Ali Jamali, published by Sciendo.en_US
dc.identifier.doi10.2478/eko-2021-0031
dc.identifier.endpage300en_US
dc.identifier.issn1335-342X
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85118787635en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage286en_US
dc.identifier.urihttps://doi.org/10.2478/eko-2021-0031
dc.identifier.urihttps://hdl.handle.net/20.500.14619/9052
dc.identifier.volume40en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSciendoen_US
dc.relation.ispartofEkologia Bratislavaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectimage classificationen_US
dc.subjectLULCen_US
dc.subjectmachine learningen_US
dc.subjectMulti-layer Perceptronen_US
dc.subjectRandom Foresten_US
dc.subjectSupport Vector Machineen_US
dc.titleLand use land cover mapping using advanced machine learning classifiersen_US
dc.typeArticleen_US

Dosyalar