Strong weak domination in complementary prisms

dc.contributor.authorAytaç, A.
dc.contributor.authorTuraci, T.
dc.date.accessioned2024-09-29T16:22:04Z
dc.date.available2024-09-29T16:22:04Z
dc.date.issued2015
dc.departmentKarabük Üniversitesien_US
dc.description.abstractLet G = (V(G),E(G)) be a graph. If uv ? E(G), then u and v dominate each other. Further, u strongly dominates v and v weakly dominates u if deg(u) ? deg(v). A set S ? V(G) is a strong-dominating set (sd-set) of G if every vertex in V(G) - S is strongly dominated by at least one vertex in S. Similarly, if every vertex in V(G) - S is weakly dominated by at least one vertex in S, then S is a weak-dominating set (wd-set). The strong (weak) domination number ?s(?w) of G is the minimum cardinality of an sdset (wd-set). In this paper the strong and weak domination numbers of complementary prisms are determined and also an algorithm for computing for strong and weak domination number of any graph is given. Copyright © 2015 Watam Press.en_US
dc.identifier.endpage96en_US
dc.identifier.issn1492-8760
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84937469210en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage85en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14619/9791
dc.identifier.volume22en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWatam Pressen_US
dc.relation.ispartofDynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithmsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComplementary prismsen_US
dc.subjectConnectivityen_US
dc.subjectGraph algorithmsen_US
dc.subjectGraph vulnerabilityen_US
dc.subjectNetwork design and communicationen_US
dc.subjectStrong and weak domination numberen_US
dc.titleStrong weak domination in complementary prismsen_US
dc.typeArticleen_US

Dosyalar