On dual rickart modules and weak dual rickart modules
dc.contributor.author | Keskin, Tütüncü, D. | |
dc.contributor.author | Orhan, Ertas, N. | |
dc.contributor.author | Tribak, R. | |
dc.date.accessioned | 2024-09-29T16:22:35Z | |
dc.date.available | 2024-09-29T16:22:35Z | |
dc.date.issued | 2018 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description.abstract | Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism ? of M, ?(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism ? of M, ?(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results. © Journal “Algebra and Discrete Mathematics”. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK, (BİDEB 2221) | en_US |
dc.identifier.endpage | 214 | en_US |
dc.identifier.issn | 1726-3255 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85050596399 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 200 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/10161 | |
dc.identifier.volume | 25 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Lugansk Taras Shevchenko National University | en_US |
dc.relation.ispartof | Algebra and Discrete Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Dual rickart modules | en_US |
dc.subject | V-rings | en_US |
dc.subject | Weak dual rickart modules | en_US |
dc.subject | Weak rickart rings | en_US |
dc.title | On dual rickart modules and weak dual rickart modules | en_US |
dc.type | Article | en_US |