CORRELATION DISTRIBUTION OF A SEQUENCE FAMILY GENERALIZING SOME SEQUENCES OF TRACHTENBERG
dc.contributor.author | Ozbudak, Ferruh | |
dc.contributor.author | Tekin, Eda | |
dc.date.accessioned | 2024-09-29T16:08:23Z | |
dc.date.available | 2024-09-29T16:08:23Z | |
dc.date.issued | 2021 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description.abstract | In this paper, we give a classification of a sequence family, over arbitrary characteristic, adding linear trace terms to the function g(x) = Tr(x(d)), where d = p(2k) - p(k) + 1, first introduced by Trachtenberg. The family has p(n) + 1 cyclically distinct sequences with period p(n) - 1. We compute the exact correlation distribution of the function g(x) with linear m-sequences and amongst themselves. The cross-correlation values are obtained as C-i,C-j(tau) is an element of {-1, -1 +/- p(n+e/2), -1 + p(n)}. | en_US |
dc.identifier.doi | 10.3934/amc.2020087 | |
dc.identifier.endpage | 662 | en_US |
dc.identifier.issn | 1930-5346 | |
dc.identifier.issn | 1930-5338 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85122294252 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 647 | en_US |
dc.identifier.uri | https://doi.org/10.3934/amc.2020087 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/7518 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000687817100006 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Mathematical Sciences-Aims | en_US |
dc.relation.ispartof | Advances in Mathematics of Communications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Sequences | en_US |
dc.subject | cross-correlation | en_US |
dc.subject | plateaued functions | en_US |
dc.title | CORRELATION DISTRIBUTION OF A SEQUENCE FAMILY GENERALIZING SOME SEQUENCES OF TRACHTENBERG | en_US |
dc.type | Article | en_US |