Implementation a Various Types of Machine Learning Approaches for Biomedical Datasets based on Sickle Cell Disorder
Küçük Resim Yok
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Institute of Electrical and Electronics Engineers Inc.
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper presents implementation a various kinds of machine learning models to classify the dataset of sickle cell patients. Artificial intelligence techniques have served to strengthen the medical field in solving its problems and providing rapid technical methods with high efficiency instead of traditional methods that can be subject to many problems in diagnosis and to determine the appropriate treatment. The main objective of this study to obtain a highly qualified classifier capable of determining the suitable dose of the SCD patients from 9 classes. Through examining the techniques used in our experiment based on performance evaluation metrics and making sure that each model performs. We applied numerous models of machine learning classifiers to examine the sickle cell dataset based on the performance evaluation metrics. The outcomes obtained from all classifiers, show that the Naïve Bayes Classifier obtained poor results compared to other classifiers. While Levenberg-Marquardt Neural Network during the training phase obtained the highest performance and accuracy of 0.935222, AUC 0.963889. The test phase obtained an accuracy of 0.846444, AUC 0.871889. © 2020 IEEE.
Açıklama
4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020 -- 22 October 2020 through 24 October 2020 -- Istanbul -- 165025
Anahtar Kelimeler
Machine-learning classifiers, Performance evaluation, SCD date sets, Sickle cell disorder
Kaynak
4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020 - Proceedings
WoS Q Değeri
Scopus Q Değeri
N/A