Experimental based numerical approach for determination of volumetric heat transfer coefficients of modified graphite foams

dc.authoridBayer, Ozgur/0000-0003-0508-2263
dc.authoridGuruf, Gursah/0000-0003-3602-8710
dc.authoridSolmaz, Ismail/0000-0002-3020-4798
dc.contributor.authorGuruf, Gursah
dc.contributor.authorSolmus, Ismail
dc.contributor.authorBilen, Kadir
dc.contributor.authorBayer, Ozgur
dc.date.accessioned2024-09-29T15:54:59Z
dc.date.available2024-09-29T15:54:59Z
dc.date.issued2020
dc.departmentKarabük Üniversitesien_US
dc.description.abstractGraphite-based porous materials are emerging as attractive alternatives to metals for use as heat dissipation elements in thermal management applications. While having several desirable features such as high thermal conductivity and low density, graphite foam heat sinks also tend to have low permeability that can limit transport of working fluid within the component and result in inefficient heat transfer. In order to improve their heat dissipation performance, graphite foams can be modified by channels drilled in various arrangements. However, the heat transfer characteristics of such modified graphite foams are not well characterized. In order to address this problem, we report novel empirical correlations for graphite foams modified in a specific configuration where circular channels with 2 mm diameter are drilled in graphite foam along the flow direction in a staggered arrangement. Then, volumetric heat transfer coefficients between the modified graphite foam and a stream of air are obtained by using transient single-blow technique (TSBT). The transient one-dimensional local thermal nonequilibrium (LTNE) model is employed for determination of the volumetric heat transfer coefficient from experimentally obtained data. Nine different modified graphite foam samples of various L/H ratios are studied in experiments and an empirical correlation of the form Nu(v) = CRea for each sample is derived. Empirical correlations for three different sample lengths (L = 27 mm, 52 mm, 76 mm) at a fixed height are also developed in the form of Nu(v) = CRea(L/H)(b). The novel empirical correlations in question are valid for the Reynolds (Re) number varying from approximately 1000 to 10000. Results show that Nuv generally increases with the increasing value of Re and L at a fixed value of H and the uncertainties associated with Re and Nu(v) are evaluated to be less than 1.3% and 3.6%, respectively. Consequently, we anticipate that the proposed correlations will be useful in reliable design of a new generation of electronic devices.en_US
dc.description.sponsorshipScientific & Technological Research Council of Turkey (TUBITAK) [315M136]en_US
dc.description.sponsorshipThe authors would like to thank the Scientific & Technological Research Council of Turkey (TUBITAK) for financially supporting this research under Project No. 315M136.en_US
dc.identifier.doi10.1016/j.applthermaleng.2020.115310
dc.identifier.issn1359-4311
dc.identifier.scopus2-s2.0-85083012417en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.applthermaleng.2020.115310
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4400
dc.identifier.volume174en_US
dc.identifier.wosWOS:000533620300039en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofApplied Thermal Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraphite foamen_US
dc.subjectVolumetric heat transfer coefficienten_US
dc.subjectSingle blow techniqueen_US
dc.subjectLocal thermal non-equilibriumen_US
dc.titleExperimental based numerical approach for determination of volumetric heat transfer coefficients of modified graphite foamsen_US
dc.typeArticleen_US

Dosyalar