Environmental pollution cost analysis of a diesel engine fueled with biogas-diesel-tire pyrolytic oil blends
Küçük Resim Yok
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier - Division Reed Elsevier India Pvt Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Fuels obtained from waste in seeking of sustainable and environmentally friendly fuel are promising for internal combustion engines. In this study, an environmental pollution cost analysis was performed for a diesel engine fueled with blends of pyrolytic oil - biogas - neat diesel fuel. Five different test fuels were studied. Neat diesel fuel (DF), the fuel mixture prepared by blending 10% pyrolytic oil to 90% neat diesel fuel by volume (DF90P10). While the DF90P10 fuel was supplied to the engine from the injector, the experiments were carried out with different fuel combinations created by delivering gaseous biogas at constant flow rates of 1, 3 and 5 L/min from the intake manifold (DF90P10B1, DF90P10B3, DF90P10B5). The experiments were carried out in a single-cylinder, air-cooled, direct injection diesel engine, with a constant engine speed of 3000 rpm and four different engine loads ranging from 0.25 to 1 kW, with prepared fuel blends. Fuel consumption, exhaust emissions, exhaust and engine block temperatures were measured to make environmental pollution cost analysis. In these tests, it was found that the DF90P10B1 test fuel performs better results as compared to those of neat diesel fuel which is reference fuel and other test fuels in terms of environmental pollution cost analysis. Pyrolytic oil - biogas - diesel fuel mixtures in variable ratios, can be used as an alternative fuel instead of neat diesel in diesel engines without any engine modifications. (C) 2020 Karabuk University. Publishing services by Elsevier B.V.
Açıklama
Anahtar Kelimeler
Environmental pollution cost analysis, Biogas, Tire pyrolytic oil
Kaynak
Engineering Science and Technology-An International Journal-Jestech
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
24
Sayı
3