Dynamic response, durability, and carbon footprint analysis of the marl clay treated with sodium lignosulfonate as a sustainable-environmentally friendly approach

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the current study, the marl clay was improved by different contents of sodium lignosulfonate (NLS) and cured at different times and then, all samples were subjected to Bender Element (BE), Unconfined Compressive Strength (UCS), and Brazilian Tensile Strength (BTS) tests considering two different dry condition (DC) and wet condition (WC). The durability of the samples was further controlled by a special technique, namely the soaking test. The carbon footprint analysis was undertaken for a low-volume trench project to address the sustainability benefits associated with replacing cement and lime as traditional stabilizers with NLS. The results show that the reuse of NLS as a non-traditional alternative for stabilizing marl soil can play an influential role in improving dynamic parameters as well as sustainable development. It has been observed that the CO2 emission decreases up to 5.6 and 4.4 times compared to lime and cement, respectively. Additionally, the use of NLS enhances the UCS by 249%, BTS by 208%, and small strain shear modulus by 117%. Furthermore, reducing the adverse effects of the WC on soil properties, among others, was the main finding of utilizing the NLS in marl stabilization with curing time. NLS-treated marl samples were able to preserve the integrity of their particles even after being soaked in water for a period of 3 weeks. In contrast, the particles of the untreated sample started to disintegrate within a few seconds of initiating the soaking test. Finally, possible equations correlating the dynamic and static moduli were reported in this study.

Açıklama

Anahtar Kelimeler

Marl clay, Lignosulfonate, Stabilization, Bender element, Wet condition, Soaking test

Kaynak

Physics and Chemistry of the Earth

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

135

Sayı

Künye