Enhanced photoelectrochemical transient photoresponse properties of molybdenum oxide film deposited on black silicon
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Nanostructured black silicon (b-Si) is widely deployed for different solar applications due to its novel light-harvesting characteristics, and large surface area-to-volume ratio. The present research work applies a novel approach via the chemical vapour deposition method to prepare molybdenum oxide (MoO3) film on a b-Si substrate for photoelectrochemical application. X-ray diffraction revealed alpha-MoO3 phase, with the MoO3/b-Si film exhibiting a relatively large crystallite size and improved crystalline quality. Optical reflectance measure-ments showed a relatively low reflectance and reduced optical bandgap energy for the MoO3/b-Si film. Chro-noamperometric measurements showed an enhanced photocurrent density of 656.34 mu A/cm2 at 1 V bias for the MoO3/b-Si photoanode measured in a 0.5 M H2SO4 solution. The enhanced photoelectrochemical activity could be attributed to an increase in light absorption, the relatively small bandgap energy, improved crystalline quality, and improved charge carrier separation and transfer at the interface.
Açıklama
Anahtar Kelimeler
Molybdenum oxide, Photoelectrochemical water splitting, Photocatalysis, Black silicon, Chemical vapour deposition
Kaynak
Materials Science and Engineering B-Advanced Functional Solid-State Materials
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
289