An investigation on failure behaviour of bonded polylactic acid adherends produced by 3D printing process: experimental and numerical approach
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This study investigated the failure behaviour of adhesive bonded single lap joints (SLJs) of Poly (lactic acid) (PLA) adherends fabricated by 3D printing. Adherend printing angle (0 & DEG;, 45 & DEG; and 90 & DEG;) adherend thickness (2, 4 and 6 mm), and overlap length (12.7 and 25.4 mm) were chosen as joint design parameters. In addition to the experimental study, a 3D nonlinear finite element (NL-FE) analysis was performed to determine the variation of stress components in adhesive layer and the numerical failure load of SLJs. The material properties of adherends with different printing angles were defined using Hill yield criterion (HYC). The present study could be considered a novel one given that it presents an anisotropic yield criterion to evaluate the failure of adhesive bonded joints with printed adherends. An analytical expression was also derived to calculate the tensile stiffness of joints. Results obtained from the experimental tests and analytical expression indicated that increasing the adherend thickness, the overlap length, and the printing angle increased the strength and the tensile stiffness of joints, respectively. It was found that the combined effect of printing angle and adherend thickness on joint strength is more prominent for SLJs with overlap length of 25.4 mm. The highest printing angle of 90 & DEG; gave an 85.26% improvement in the failure load when the adherend thickness was increased from 2 to 6 mm for this group of SLJs. The accuracy of NL-FE model based on the HYC was evaluated by comparing the numerical failure loads and failure types with those from the corresponding experiments. NL-FE analyses proved that the HYC could capture the effect of joint design parameters on the strength of the SLJs.
Açıklama
Anahtar Kelimeler
3D printing, Adhesive bonded joint, Finite element analysis, Mechanical testing
Kaynak
Journal of the Brazilian Society of Mechanical Sciences and Engineering
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
45
Sayı
8